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Modulation of Prostate Cancer Growth
in Bone Microenvironments
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Abstract Bone remains one of the major sites, and most lethal host organs, for prostate cancer metastasis. Prostate
cell spread and establishment in bone depends onmultiple reciprocalmodifications of bone stromal and epithelial cancer
cell behaviors. This review focuses on recent advances in the characterization of cell–cell and cell–matrix interplay,
effects on cell growth, adhesion and invasion, and several therapeutic possibilities for co-targeting prostate cancer cells
and bone stroma.We address the topic from threemain perspectives: (1) the normal and aging bone stromal environment,
(2) the ‘‘reactive’’ bone stromal environment, and (3) the cancerous prostate epithelial cells themselves. First, normal, and
especially aging, bones provide uniquely rich and ‘‘fertile soil’’ for roaming cancer cells. The interactions between
prostate cancer cells and insoluble extracellularmatrices, soluble growth factors, and/or sex steroid hormones trigger bone
remodeling, through increased osteoclastogenesis and furthurmatrixmetalloproteinase activity. Second, after cancer cell
arrival and establishment in the bone, host stromal cells respond, becoming ‘‘reactive’’ in a process again involving
extracellular matrix remodeling, together with growth factor and steroid receptor signaling this process ultimately
enhances cancer cell migration, stromal transdifferentiation, and invasion of the cancer tissues by stromal, inflammatory,
and immune-responsive cells. Third, prostate cancer cells also respond to supportive bone microenvironments, where
soluble and matrix-associated molecules affect cancer cell growth and gene expression, especially altering cancer cell
surface receptor and integrin-mediated cell signaling. We discuss both integrin cell–matrix and gap junctional cell–cell
communication between cancer cells and their microenvironments during prostate cancer progression. J. Cell. Biochem.
91: 686–705, 2004. � 2003 Wiley-Liss, Inc.
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Like many other metastasizing cancer cells,
cancerous prostate epithelial cells interact with
multiple distinct organ microenvironments, in-
cluding the surrounding prostate gland before
and during their escape, the lymphatic and

vascular endothelia during transit, and the
bone upon establishment within the skeleton.
To successfully treat patients with prostate
cancer bone metastasis and its associated com-
plications, such as spinal cord compression,
pathological bone fractures, chronic pain, ane-
mia, and infection, a better understanding is
needed of the interactions between prostate
cancer cells and their environments, especially
those of the bone. This review focuses on the
recent characterization of this cell biology, in
particular bone regulation of prostate cancer
cell growth, adhesion and invasion, as well as
the reciprocal effects of the stromal environ-
ment on cancer cells.

It has long been observed that tumors of dif-
ferent origins appear predisposed to metasta-
size to different organs, depending primarily
on the circulatory system to gain access. In the
1800s, cancer cells were detected in the blood
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stream [Cruveilhier, 1829;Ashworth, 1869] and
identified as metastatic emboli in the 1950s
[Engell, 1955; Roberts et al., 1958]. As early as
1889, Dr. Stephan Paget [Paget, 1889] exam-
ined the autopsy records of 735womenwho died
of breast cancer and proposed the popular ‘‘seed
and soil hypothesis,’’ arguing that the tumor
cells (the seeds) had specific affinities for the
growth milieu provided by certain organs (the
soil). More recent experiments have revealed
that distinct locations of metastases can be
predicted and traced following injection of
melanoma cells into mice [Fidler and G, 1976].
The skeleton is fertile ground for many tumor
types. Approximately 95–100% of myelomas,
65–75% of breast and prostate cancers, 60% of
thyroid cancer, and 15–45% of bladder, lung,
and renal cancers and melanomas end up in
bone [Cifuentes and Pickren, 1979]. When
considering skeletal metastasis, researchers
have focused on such topics as: the tropism of
cancer cells to bone, the roles played by the bone
marrow’s reticulate vasculature, its provision of
uniquely rich oxygen, nutrients and survival
factors to tumor cells, the routes taken by
heterogeneous cancerous cell types, and their
migration and invasion into marrow stroma,
and finally, subtle differences between bone
microenvironments. Prostate cancer cells may
employ a unique portal-like venous drainage
system between the prostate and the lower
spine [Bastón, 1940; Resnick, 1992; Bubendorf
et al., 2000]. The size and frequency of meta-
static tumors found in 1,589 prostate cancer
autopsies revealed that not only do spine
metastases precede those to lung and liver, but
there is an upward metastatic spread along
spinal veins after initial lumbar metastatic
deposits are established [Bubendorf et al.,
2000]. Although many metastases remain
unpredictable, suggesting complex and multi-
step mechanisms for cancer cell spread and
establishment [Liotta and Kohn, 2001], bone
remains the major organ for prostate cancer
metastasis. This review is subdivided into three
parts: (1) the normal and aging bone stromal
environment as a ‘‘rich soil,’’ (2) the reactive, or
activated bone stromal environment and its
effects on the interplay between prostate cancer
and bone stromal cells, and (3) the responsive
character of prostate cancer cells, themselves,
especially in terms of integrin-mediated cell–
matrix, and gap junction-mediated cell–cell
communications.

NORMAL AND AGING BONE STROMA:
A RICH SOIL FOR CANCER CELLS

Bone heterogeneity and the complexity of
microenvironments are key to an understand-
ing of restriction and selectivity in cancer cell
spread within a non-uniform environment.
Prostate cancer cells are known to ‘‘prefer’’
trabecular bone, also called spongy or cancel-
lous bone, a bone type composed of a network of
tiny strands of bone trabeculae. Such bone is
found at the ends of long bone, in ribs, in the
pelvis, vertebrae, and the skull and is inter-
spersed with marrow and a rich vasculature.
For successful metastasis, the cells of trabecu-
lar bones must attract cancerous prostate cells,
allow them entry into the tissue, and provide
optimal growth conditions once inside.

Entry into the bone marrow is generally
believed to dependupon the arrest of circulating
cancer cells in the vascular beds, with single
cells arresting in the capillaries, while multi-
cellular aggregates arrest in larger vessels
[Liotta et al., 1976]. Recent evidence argues
that only endothelium-attached cancer cells are
able to give rise to metastases [Al-Mehdi et al.,
2000]. Cell ‘‘docking’’ on the vasculature in-
volves recognition of protein receptors, such as
selectins, integrins, cadherins, and immunoglo-
bulin superfamily members. These proteins
may be expressed initially by the cancer and/
or vascular endothelial cells in response to
disease progression and local cues, such as
growth factors, cytokines, chemokines, or reac-
tive oxygen species. Along with the heterotypic
cell interactions between cancer cells and endo-
thelia, homotypic interactions within multi-
cellular cancer cell aggregates also occur. In
several instances, in vivo selection for tumor
cells of highmetastatic potential has resulted in
the selection of cells with increased homotypic
aggregation properties [Saiki et al., 1991;
Glinsky and Glinsky, 1996]. This correlation
appears to depend upon selectins and b-galacto-
side-mediated adhesive interactions, at the
sites of primary attachment to the microvascu-
lar endothelia [McEver, 1997; Glinsky et al.,
2003]. Beyond specific cell adhesions, bone
endothelial sites may also be favored for bio-
mechanical reasons. Unlike other bones, the
vascular beds within trabecular bones form
sinusoids of large diameter and reduced blood
flow rate (up to ten times slower), possibly
allowing increased cancer cell attachment to
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vessel surfaces, and their access across only a
few microns into the stromal marrow compart-
ment itself [Schnitzer et al., 1982]. This unique
vasculature may help to resolve conflicting
results from calculations of the times required
for sufficient cancer cell attachments to endo-
thelia prior to appearance in the bone [Haier
and Nicolson, 2001a,b].

A prostate epithelial cells ability to interca-
late among bone cell’s may be of greater im-
portance than the strength of their initial
adhesion; in vitro, prostate carcinoma cells pre-
ferentially interact with bone marrow endothe-
lial cells (HBME), adhering to HBME over
umbilical vein, aortic, dermal, or lung endothe-
lial cells (HUVEC, HAEC-1, HDMVEC, and
Hs888Lu, respectively) [Lehr and Pienta, 1998;
Scott et al., 2001; Sikes et al., 2003 submitted].
Shortly after prostate (and breast) cancer cells
relocate to vessel walls, they express factors
that are known to stimulate endothelial retrac-
tions and are believed to induce ‘‘reactive’’
stroma. One such factor is osteonectin. This
small Ca2þ ion-binding glycoprotein is normally
expressed by osteoblasts, endothelial cells, and
megakaryocytes [Rodan and Noda, 1991; Kelm
et al., 1992; Thomas et al., 2000; Brekken and
Sage, 2001; Lin et al., 2001]. Cancer cell
expression of osteonectin is involved in Human
Epidermal growth factor Receptor 2 (HER2,
also referred to as Her2/neu or c-erbB2) tissue
remodeling and the breaching of vessel walls
[Sanchez et al., 2002; Holbro et al., 2003].
Porous vessel walls give the cancer cells access
to both chemotactic factors from the underlying
tissue compartments and new extracellular
matrices.

Once attached, cancer cells encounter vary-
ing levels of chemotactic, adhesion, and growth
factors provided by marrow stromal cells [Hart,
1982; Liotta and Kohn, 2001]. Not only do
prostate cancer cells adhere to bone marrow
endothelial cells, osteoblasts, and prostate
stromal fibroblasts [Haq et al., 1992; Lehr and
Pienta, 1998], but media conditioned by these
cells can stimulate prostate cancer cell growth
[Lang et al., 1995]. Further evidence that bone
stromal cells may prepare their soil with
unique, even species-specific ‘‘fertilizers’’ comes
from Tsingotjidou et al. [2001], who demon-
strated that human prostate cancer cells home
to experimentally implanted human bone,
rather than to the mouse bone within their
athymicmouse hosts. The identities and roles of

the released factors responsible for suchhoming
are not yet clear [Tsingotjidou et al., 2001].

A recurring statement in the literature is that
bonematrix is composed ofmore than90%type I
collagen fibrils secreted by osteoblasts, but bone
is a dynamic tissue, constantly being remodeled
and altered through both local and systemic
cues. Maintenance of compartmentalization
and multiple delicate balances in collagenous
and non-collagenous components of the bone
extracellular matrix are key to tissue home-
ostasis, bone remodeling, and disease, but have
proven difficult to study, as they depend upon
many cell types and regulation by cytokines,
growth factors, and matrix metalloproteinases.
Isotype-specific collagenantibodieshave reveal-
ed that collagens are compartmentalized.
Although collagens I, III, and X are all matrix-
localized, collagen III is the most abundant in
the marrow [Reddi et al., 1977], where it is
produced by cells of fibroblast lineage [Castro-
Malaspina et al., 1980]. Type IV collagen is
produced by endothelial cells [Jaffe et al., 1976]
and is found in the basement membranes of the
vascular sinuses [Gay et al., 1984], where the
endothelial cells of the vessel walls are sepa-
rated from the adventitial cells by the collagen
IV and laminin basement membrane [Inoue
and Osmond, 2001]. Likewise, non-collagenous
matrix components, including fibronectin,
vitronectin, laminin, and bone sialoprotein,
may also be compartmentalized and shift levels
or localization during bone remodeling or
cancerous invasion. For example, laminin 5
(LM-5) protein occurs in a novel bone-specific
isoform (with the chains a5, b2, and g2) in
multiple splice versions, and ismarkedly absent
in cancerous prostate cells before their estab-
lishment in bone [Siler et al., 2000, 2002; Hao
et al., 2001].

Much of the bone matrix is produced by
osteoblasts, whose activities are closely coupled
to those of the osteoclasts and invading cancer
cells. In vitro osteoblasts are known to be able
in the presence of ascorbic acid and b-glycer-
ophosphate, to form a mineralized bone matrix
closely resembling woven bone [Quarles et al.,
1992]. Metastasizing prostate cancer cells, once
inside the bone, actually mimic osteoblasts, not
only in their synthesis and deposition of non-
collagenous bone matrix proteins (including
osteopontin, osteonectin, osteocalcin, and bone
sialoprotein) [Koeneman et al., 2000], but also
by participating directly in osteoclastogenesis
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and the formation of mineralized bone. This
ability to take part in osteoclastogenesis has
been linked to prostate epithelial cell expression
of RANKL (receptor activator of NF-kB ligand)
and sRANKL (soluble RANKL), both of which
are capable of activating osteoclasts through the
cell surface receptor, RANK [Boyle et al., 2003;
Lee et al., 2003]. Activated osteoclasts degrade
the bone, releasing a number of crucial growth
factors and cytokines, including TGF-b, IGF-1,
and IL-6, and directly or indirectly promoting
proliferation of both osteoblasts and prostate
cancer cells [Brown et al., 2001a,b]. Together,
invading prostate cancer cell matrix deposition
and growth factor regulation are likely to have
profound effects on cell adhesion, motility,
proliferation, and survival.
Given that bone stromal-derived growth

factors affect cancer cell response to chemo-
kines, in a trans-activation process [Mira et al.,
2001], a better understanding is needed of both
systemic and local cues for bone remodeling, as
well as shifts in bone microenvironmental com-
position, especially in the context of aging bone.
It is generally accepted that bone turnover rates
and bone loss are accelerated in response to
shifts of hormone level, but there are differences
in bone loss at different skeletal sites and
between cortical and trabecular bone. Aging is
accompanied by a reduction in both trabecular
bone volume and numbers of endosteal and
osteocyte cells. Additionally, hematopoietic tis-
sue decreases, while fat cells increase. Although
there is great variability in the scale of these
changes, depending upon both sex and age, two
mechanisms involving matrix proteins have
been outlined to explain them. The first is based
upon the extracellular matrix becoming more
rigid, due to cross-linking ofmatrixproteins and
changes in surface charge, either by glycation or
by oxidation of lysyl and hydroxy lysyl residues
to aldehydes [Miyata et al., 1997; Bailey et al.,
1998; Hadley et al., 1998]. These changes are
accompanied by degradation of the collagen
and other matrix proteins [Termine, 1990]. The
second mechanism involves decreased produc-
tionof themost commonmatrixproteins, as seen
in cells from donors of increasing age [Fedarko
et al., 1990, 1992, 1995]. Such decreases are
likely to alter the soluble growth factor and cyto-
kine cuesnormally containedwithin thematrix.
The intersection between research findings

on hormones, bone remodeling, aging, and pros-
tate cancer is complex, but rich, especially

because of well known hormonal effects on
extracellular matrix composition, growth fac-
tors, and cytokines. Balances of estrogenic and
androgenic actions on bone have been studied
in animal models, where estrogen functions
to reduce longitudinal growth rate, whereas
androgens actually stimulate chondrocyte mat-
uration and metaphyseal ossification [Lebovitz
and Eisenbarth, 1975]. Although androgen
deficiency can reduce these processes, androgen
elevations are also able to reduce growth,
possibly indirectly, through aromatization to
form estrogen [Iannotti, 1990; Hermann et al.,
2000]. The increased estrogen levels observed
in obese patients, together with altered meta-
bolism in the fat cells, likely support trans-
differentiation of prostatic fibroblasts into
smooth muscle cells, an important event early
in the development of benign prostatic hyper-
plasia (BPH), among aging males. Increases in
femoral fracture incidence, which also correlate
with aging, may be at least partly attributable
to shifts in the rates of bone turnover, although
changes in bone mass are not as well docum-
ented [Boonen et al., 1997]. While some have
correlated androgen levels inversely with bone
loss, others have disputed these findings and
claim that bone mass is unrelated to serum
testosterone and adrenal androgens.

In addition to circulating sex steroids, some
cytokines directly regulate bone cell behavior,
while others appear to act indirectly through
growth factors. Shifts in both cytokine and
growth factor levels are known to accompany
aging. For example, interleukin-6 (IL-6) levels
increase in the serum of older individuals,
particularly after menopause or andropause.
IL-6 not only regulates inflammation, but has
been implicated in rheumatoid arthritis, osteo-
porosis,multiple sclerosis, andmostnotablyhas
been identified as a direct regulator of osteo-
blast function [Gimble et al., 1994; Jay et al.,
1996]. Other factors linked to aging and chan-
ging estrogen levels are interleukin-1 (IL-1) and
tumor necrosis factor (TNF-a). IL-1 and TNF-a
are among the most powerful stimulators of
bone resorption known, and well-recognized
inhibitors of bone formation.However, systemic
levels should not be considered the only mea-
sures of a regulator’s effectiveness. Local con-
centrations need not necessarily change as
systemic levels do, and osteoblast responses to
growth regulators may shift as well. Such is
the case for osteoblast response to insulin-like
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growth factor-1 (IGF-1). IGF-1 receptor levels
do not change, but osteoblast response to the
growth factor decreases with age [Pfeilschifter
et al., 1993, 2000; D’Avis et al., 1997; Ankrom
et al., 1998]. In this way, age-associated shifts
in any given factor could be either further
enhanced or ameliorated quite locally [Rosen,
2000].

TUMOR-ASSOCIATED STROMA: ACTIVE
PARTICIPANTS IN CANCER PROGRESSION

Stromal cells are now known to actively
modify cancer cell behavior, instead of provid-
ing only passive support for local cancer growth.
In fact, cancer and stromal cells reciprocally
modify each other’s microenvironments, using
feedback cycles to support cell growth and dif-
ferentiation, during both normal development
and disease [Chiquet-Ehrismann et al., 1986;
Yee et al., 1989;Basset et al., 1993;Wright et al.,
1994; Singer et al., 1995]. In the LNCaP human
prostate cancer progression model, we demon-
strated a change in cell phenotype frommargin-
ally tumorigenic behavior to tumorigenic and
bone metastatic behavior, following cell follow-
ing cell co-culture with other human prostate or
bone stromal cells in vitro [Rhee et al., 2001] and
in vivo [Thalmann et al., 1994]. Organ-specific
stromal cell treatment can irreversibly deter-
mine genomic organization of cancer epithelia,
resulting in cancer cell progression to androgen
independence and increased bone metastatic
potential [Thalmann et al., 1994, 2000].

Fibroblasts and smooth muscle stromal cells
in the human prostate gland synthesize both
the structural and regulatory components of the
extracellular matrix, forming a meshwork of
fibrillar, adhesive glycoproteins, and proteogly-
cans. This matrix serves as a reservoir of active
and latent growth factors [Tuxhorn et al., 2001],
such that stromal cells are greatly affected by
matrix remodeling during cancer progression.
In prostate and other cancers, stromal cells at
the invasion fronts have been shown to change
both morphologically and biochemically, con-
verting from fibroblasts to myofibroblasts, and
expressing vimentin, versican, hyaluronic
acid, MMP2, MMP9, fibroblast activation pro-
tein (FAP), pro-collagen Type I, and tenascin
[Tuxhorn et al., 2002a,b,c]. These changes are
termed stromal activation, and correlate nega-
tively with patient survival [Tuxhorn et al.,
2001, 2002a]. Conversion to myofibroblasts

occurs in colon, liver, lung, breast, pancreas,
and prostate cancers, where it is localized to the
invasion fronts [Miura et al., 1993; Neaud et al.,
1995; Ronnov-Jessen et al., 1995; Rowley, 1998;
Doucet et al., 2000; Lohr et al., 2001]. In breast
cancer, myofibroblast progenitors have been
identifiedasfibroblasts (100%),vascularsmooth
muscle cells (40%), and pericytes (10%) [Bissell
et al., 1999; Bissell and Radisky, 2001]. In the
last case, pericytes would need to migrate from
the blood vessel basement membrane to the
interstitial collagenous stroma [Ronnov-Jessen
et al., 1995].

Thus, when activated, stromal cell popula-
tions change both phenotypically and genotypi-
cally [Moinfar et al., 2000], but questions
remain about how many of the stromal myofi-
broblasts are endogenous (but altered by asso-
ciation with the cancer cells) and howmany are
‘‘recruited’’ from other cellular compartments.
A three-dimensional co-culture study in our
program, using multiple stromal cell lines (the
human osteosarcoma cell line MG-63, a human
prostatic stromal cell line, and the marginally
tumorigenic LNCaP cell line), resulted in per-
manent, non-random genotypic changes of the
LNCaP cells, together with associated pheno-
typic changes in tumorigenicity and metastatic
potentials [Rhee et al., 2001]. The reciprocal is
also true, as androgen-independent, metastatic
C4-2 tumor cells can genotypically and pheno-
typically alter co-cultured stromal cells (Sung
et al., unpublished observation). These in vitro
studies effectively argue for transdifferentia-
tion of pre-existing, tumor-associated stroma,
rather than cell recruitment during cancer
progression.

Molecular Regulation of Stromal Conversion

Myofibroblast conversion in primary prostate
tissue can be regulated in vivo and in vitro
by transforming growth factor b1 (TGF-b1)
[Tuxhorn et al., 2002a,b,c], with necessary
TGF-b1 concentrations decreasing as prostate
cancer cell malignancy status increases [Tux-
horn et al., 2002a,b,c]. As a candidate regulator
for the genesis of reactive stroma at Prostatic
Intraepithelial Neoplasia (PIN) sites, TGF-b1
increase in high-grade PIN lesions [Tuxhorn
et al., 2002a,b,c]. TGF-b1 regulates the stromal
response to wound repair, a response commonly
compared to tumor progression (see below), and
is also known to regulate angiogenesis. When
TGF-b1 expression is blocked, angiogenesis
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decreases dramatically [Tuxhorn et al.,
2002a,b,c]. This effect may be linked to myofi-
broblast expression of vascular endothelial
growth factor (VEGF), in response to hypoxia
or other growth factor release [Orlandini and
Oliviero, 2001]. In fact, TGF-b1 is known to act
not only with VEGF, but also platelet derived
growth factor (PDGF), and fibroblast growth
factor (bFGF) to drive the reactive stromal
response during cancer progression [Tuxhorn
et al., 2001; Sung and Chung, 2002; De Wever
and Mareel, 2003]. TGF-b1 is secreted as a
latent complex that is subsequently activated
by proteinase cleavage, involving furin, plas-
min, cathepsin, human mast cell chymase,
leucocyte elastase, matrix metalloproteinases
MMP2, MMP9, MT1-MMP, avb6, and avb8
integrins, thrombospondin 1, and environmen-
tal pH change [Lyons et al., 1990; Taipale et al.,
1995; Crawford et al., 1998;Munger et al., 1999;
Yu and Stamenkovic, 2000; Mu et al., 2002].
Because TGF-b1 receptors are down-regu-

lated in carcinoma cells, but remain high in
stromal cells, TGF-b1 is thought to act directly
on stroma [De Wever and Mareel, 2003].
Despite the many factors that have now been
shown to act during TGF-b1 regulation of
stroma, downstream responses within the
stromal cells are less well understood. TGF-b1
treatment does appear to affect the smads
pathways. Smads are named after C. elegans
Sma and Drosophila Mad proteins, the first
identified members of this class of signaling
effectors, and are known to increase produc-
tion of fibronectin, plasminogen activator I, and
cyclin-dependent kinase (CDK) inhibitors [De
Wever and Mareel, 2003]. The TGF-b1 signal
pathway is also linked to the MAPK pathways,
which in turn affect other regulators, includ-
ing extracellular regulated kinase (ERK), c-
jun amino-terminal kinase (JNK), and p38
[Akhurst and Balmain, 1999; ten Dijke and
Heldin, 1999].

The Shifting Balance Between
Osteoblasts and Osteoclasts

Bone extracellular matrices contain many
embedded factors that are released when the
balance of osteoblast and osteoclast functions
is shifted and the matrix remodeled. Prostate
cancer skeletal metastases are characterized
primarily as osteoblastic with an underlying
osteoclastic component [Keller, 2002]. Ad-
vances in the understanding of osteoclastogen-

esis and prostate cancer bone metastasis have
defined several promising therapeutic targets
for reduction of tumor-induced osteolysis. One
factor found to be important in tumor-induced
promotion of osteoclast activity is the RANKL
protein (mentioned above; Table I). The
soluble form of this protein (sRANKL) is re-
quired during normal osteoclastogenesis, but
both RANKL and sRANKL are produced by
prostate cancer cells within the bone, where
they activate osteoclasts and induce osteoly-
sis. Another factor, osteoprotegerin, a soluble
decoy receptor for RANKL, inhibits RANKL-
induced osteoclastogenesis [Zhang et al., 2001],
and in murine models, has been found to in-
hibit tumor-induced osteolysis. Parathyroid
hormone-related protein and interleukin-6
(IL-6) are also produced by prostate cancer cells
and can promote osteoclastogenesis (Table I).
Other key factors orchestrating stromal reac-
tions are TGF-b1 [Tuxhorn et al., 2002a,b,c],
platelet-derived growth factor (PDGF); [Rood-
man, 2003], and factors responsible for act-
ivation of latent TGF-b1 (such as matrix
metalloproteinases) or co-signaling within the
TGF-b1 pathway (such as Wnt-catenin and
Ras); [Rowley, 1998]. Drugs that specifically
inhibit TGF-b10s activities are particularly
promising; these include soluble TGF-b1 anta-
gonists, TGF-receptor antagonists, inhibitors of
TGF-b1 intracellular signaling, and metallo-
proteinase inhibitors that block latent TGF-b1
activation [De Wever and Mareel, 2003].

Matrix metalloproteinases (MMPs) warrant
special attention in the context of bone remodel-
ling, as these zinc-dependent proteinases are
secreted by prostate cancer cells and are known
to promote osteolysis by degrading bone matrix
[Nemeth et al., 2002]. MMP2 and MMP9 have
both been associated with prostate cancer
[Dong et al., 2001; Nemeth et al., 2002] and
are found at increased levels in the blood
plasma and urine of patients with prostate
metastases [Gohji et al., 1998; Moses et al.,
1998]. Membrane-bound proteinase MT1-MMP
levels also increase during progression from
benign prostate disease to PIN, and further
to cancer [Upadhyay et al., 1999; Nagakawa
et al., 2000; Udayakumar et al., 2003]. MT1-
MMP is involved in the proteinase activation
of pro-MMP-2, pro-collagen 1, and laminin
[Ohuchi et al., 1997; Udayakumar et al.,
2003]. Matrix metalloproteinases are also
active during osteoclast recruitment to sites of
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bone remodeling [Keller, 2002; Nemeth et al.,
2002].

Both mineralized and non-mineralized bone
matrices are affected by a variety of osteoclast-
associated enzymes, including cysteine protei-
nases and MMPs. A number of synthetic MMP
inhibitors are able to slow bone resorption in
bone culture systems, including chemical inhi-
bitors of MMP-2 and MMP-9 [Hill et al., 1994,
1995]. If a ‘‘vicious cycle’’ is initiated during
prostate cancer metastasis, such that cancer
cells stimulate bone matrix turnover, which in
turn stimulates cancer growth [Nemeth et al.,
2002], MMPs may make ideal therapeutic
targets for the cycle’s disruption. In murine
models, MMP inhibitors have been shown to
diminish tumor establishment in bone. The
regulation of MMP activation and activity is
strongly dependent on the levels of Tissue In-
hibitor of MetalloProteinases (TIMPs); [Liotta
et al., 1991; Nagase, 1997; Brew et al., 2000].
Hence, balance between proteinases and inhi-
bitorsmay determine the net enzymatic activity
present in the tissue. Significant down-regula-
tion of TIMP1 and TIMP2 correlate with the in-
ductionofpro-MMP9expression, inco-cultureof
prostate cancer and stroma [Dong et al., 2001];

this effect is likely due to the stromal cells, as
they are themajor producers of TIMPs. Cancer-
ous progression could, then, be supported by
both increased MMP expression and decreased
TIMPs, and the resultant changes in MMP
concentrations and half-lives. Other promoters
of osteolysis, derived from prostate cancer
metastases, may now also be considered as
new therapeutic targets [Dong et al., 2001].

Stromal Invasion of Epithelia:
Wounds That do not Heal

During organogenesis and normal mainte-
nance of adult organs, stromal and inflamma-
tory cells intercalate among epithelial cells,
regulating morphogenesis and cytodifferentia-
tion [Ronnov-Jessen et al., 1996; Bissell and
Radisky, 2001]. As active participants in carci-
nogenesis, stroma can: (1) increase deposition of
extracellularmatrices [Sung and Chung, 2002],
(2) recruit other ‘‘reactive’’ stromal fibroblasts
or myofibroblasts to the tumor [Tuxhorn et al.,
2002a,b,c; Zidar et al., 2002], and (3) alter
microenvironements adjacent to the tumor,
through inflammatory and immune-responsive
cell secretion of cyto- and chemokines [Svenne-
vig, 1980; Heinrich et al., 2003; Wang et al.,

TABLE I. Secreted Factors FromProstate Epithelial Cells That Stimulate
Bone Remodeling by Modulating Osteoblast and Osteoclast Activity

Factors Bone formation Bone resorption

Bone resorption
sRANKL þ(1)
Osteoprotegerin (OPG) þ(1)
IL-1 þ(2)
Cathepsin K þ(3)
Collagen I amino-terminal telopeptide (NTX) þ(4)
a-Collagen I carboxy terminal telopeptide (a-CTX) þ(4)
b-Collagen I carboxy terminal telopeptide (b-CTX) þ(4)
Collagen I cross-linked carboxy terminal

telopeptide (ICTP)
þ(4)

TNF-a þ(2)
ET-1 �(5)

Bone formation
Galectin-1 þ(6)
Cyclophilin A þ(7)
BMP-2 þ(2)
BMP-4 þ(2)
BMP-6 þ(8)
Bone alkaline phosphatase (BAP) þ(4)
Pro-collagen I amino-terminal propeptide (PINP) þ(4)
ET-1 þ(9)
PTHrP þ(10)
IL-6 þ(2, 11)
Placenta bone morphogenic protein (PLAB) þ(12)
Bone sialoprotein (BSP) þ(13)
Osteoprotegerin (OPG) þ(2)
IGFBP-3 �(14)

(1) [Brown et al., 2001a,b], (2) [Lee et al., 2003], (3) [Brubaker et al., 2003], (4) [de la Piedra et al., 2003],
(5) [Chiao et al., 2000], (6) [Andersen et al., 2003a], (7) [Andersen et al., 2003b], (8) [Autzen et al.,
1998], (9) [Guise et al., 2003], (10) [Dougherty et al., 1999], (11) [Garcia-Moreno et al., 2002], (12) [Thomas
et al., 2001], (13) [Waltregny et al., 2000], (14) [Fizazi et al., 2003].
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2003]. Because this sequence of events mimics
classic wound-healing cascades (albeit without
normal levels of apoptosis), cancers have been
referred to as ‘‘wounds that do not heal’’ [Tux-
horn et al., 2001, 2002a]. In this context, the
stromal reaction to tumor epithelia could be
viewed as a host defense mechanism, initially
intended to curtail or restrict tumor expansion.
Sadly, the stromal reactionultimately increases
stromal cell number, alters stromal differentia-
tion, and produces the extracellular matrices,
growth factors, andmetalloproteinases of a uni-
quely ‘‘fertile soil’’ for the support of tumor cell
growth and invasion.

THE CANCER CELL: A MOVING TARGET

Not only the bone stromal cells, but also the
prostate cancer cells change irreversibly during
disease progression and metastasis. Because of
feedback loops, it is difficult to separate early
soil changes from those in the seeds. As human
prostate carcinoma cells change phenotype they
actively participate in bone turnover, thus
affecting both the stroma and their own sub-
sequent regulation. Attempted time-courses
and causal relationships are often unclear on
whether shifts in protein expression by the
prostate cells occur before extravasation or are
the consequence of tumor microenvironment
interaction at the new location. To obtain a true
developmental time-course, one would have to

analyze the circulating prostate cells in patients
before metastases occur [Ts’o et al., 1997; Wang
et al., 2000; Ellis et al., 2003] and compare
expression profiles of prostate cancer cells from
primary tumors and marrow biopsy specimens.
Unfortunately, such measurements have not
yielded clinically significant results, suggesting
that the location of the prostate cancer cellsmay
not be as telling as the cells’ specific phenotypes.
For example, over 50% of all prostate patients
with clinically localized disease have prostate
cells in their bonemarrow, but only 10–30% are
expected to develop recurrence after radical
prostatectomy, and even fewer to develop de-
tectable skeletal metastases. Thus, it seems
likely that proliferative cancer cell phenotypes
principally develop after re-localization to the
bone environment.

Adhesion to Extracellular Matrices
at Sites of Metastasis

Cancer cell adhesion to new extracellular
matrices depends upon a variety of cell mem-
brane receptors, including the integrins. Pre-
vious studies of integrin expression in various
epithelial carcinomashave found that increased
levels of the avb3 integrin heterodimer correlate
well with metastatic potential, but otherwise
many published observations conflict. Table II
shows that integrin expression can change
transiently during disease progression; thus,
some of the published discrepancies may not

TABLE II. Differences in Integrin Expression Between Cell Lines of
Different Metastatic Potential

Integrin Cell line DU-145 PC3 LNCaP RWPE-1 Change in carcinoma
Change in
metastasis

a2b1 0 (2) þ(3) �(6) þ(6)
a3b1 �(2) þ(3) 0 (7)
a5b1 0 (2)
a6b1 þ(1) þ(3) 0 (7–9); þ(6) þ(6)
a6b4 þ(1) þ(2) �(3) �(8–11)
avb3 0 (2) þ(3) þ(12)
a2 þ(4) �(7)
a3 0 (1) þ(4) �(7)
a4 � (7)
a5 0 (1) þ(4) �(7)
a6 þ(1) 0 (4) � (5) 0 (13); �(7)
av �(6)
b1 0 (1) þ(4) 0 (13,14); � (7); þ(15)
b1A 0 (16)
b1C �(14,16,17)
b2 0 (7)
b3 0 (7) þ(18)
b4 þ(4) �(7,9,10,11,13)

þ, increases; 0, stable;�, decreases. (1) [Rabinovitz et al., 1995], (2) [Dedhar et al., 1993], (3) [Edlund et al., 2001], (4) [Freedland et al.,
2003], (5) [Bello-DeOcampo et al., 2001], (6) [Bonkhoff et al., 1993], (7) [Cress et al., 1995], (8) [Nagle et al., 1994], (9) [Nagle et al., 1995],
(10) [Allen et al., 1998], (11) [Davis et al., 2001], (12) [Zheng et al., 1999], (13) [Knox et al., 1994], (14) [Perlino et al., 2000], (15) [Murant
et al., 1997], (16) [Fornaro et al., 1996], (17) [Fornaro et al., 1999], (18) [Hartstein et al., 1997].
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only be attributed to differences inmethodology
and antibodies, but to cell stage. In prostate
cancer research, one a integrin subunit, a6,
has received the majority of attention. The a6
subunit pairs with b1 or with b4 in hemidesmo-
somal structures. b4 is not found in metastatic
cells [Allen et al., 1998], whereas a6 expression
decreases more slowly during disease pro-
gression, and actually increases remarkably in
lymph node metastasis [Bonkhoff et al., 1993].
This pattern is somewhat similar to that of a2,
although decreases in a2 are detectable at much
earlier stages. Further complexity in protein
pattern was revealed by findings in the LNCaP
prostate cancer progression system; we discov-
ered that as prostate cancer cells progress,
differences in the regulation of integrin subunit
usage and heterodimerization are much more
marked than differences in the surface expres-
sion of most integrins [Edlund et al., 2001].

Unlike the other integrin heterodimers, ex-
pression and activation of the vitronectin recep-
tor avb3 integrin has been clearly linked to the
metastasis and progression of many cancers
[Juliano and Varner, 1993], most specifically to
cell migration through basement membranes,
in studies using function-blocking antibodies in
vivo [Brooks et al., 1994a,b]. avb3 integrin is also
expressed by proliferating vascular endothelial
cells during angiogenesis [Brooks et al., 1995;
Drake et al., 1995]. Monoclonal antibodies or
small molecular antagonists for avb3 are known
to inhibit blood vessel formation (including
tumor angiogenesis) in a variety of in vivo
models [Eliceiri and Cheresh, 2000, 2001].
These promising results, however, are con-
founded by the finding that mice lacking both
avb3 and avb5 not only support enhanced tumor
growth, but also present increased neovasc-
ularization [Reynolds et al., 2002].

Despite probable redundancy during angio-
genesis and extravasion, antibodies, peptides,
and chemical compounds have all been tested as
integrin antagonists, with clinically significant
results in some cases [Gutheil et al., 2000].
Furthermore, small, non-peptide inhibitors of
bothavb3 andavb5 integrinheterodimers inhibit
tumor angiogenesis [Kumar et al., 2001;
Kumar, 2003], and in our hands have success-
fully blocked previously established tumor
growth in the femur, when systemically deliv-
ered (unpublished observation). The actual
mechanism behind integrin-based decreases in
tumor growth remains unclear, but could be

direct regulation of cell proliferation and/or
indirect regulation involving growth factors
and angiogenesis. One intriguing indirect pos-
sibility is the cooperation between integrins and
matrix metalloproteinases (MMP’s). The bind-
ing of MMP-2 to integrin avb3 in invasive cells
appears to act together with MT1-MMP to
present activated MMP-2 on the cell surface
[Hofmann et al., 2000]. Inhibitors used to block
b3-integrin function also inhibit MMP-2 by
decreasing the expression of MT1-MMP [Pasco
et al., 2000].

In addition to the integrins, Ig-domain cell
adhesion molecule L1 (L1CAM) is also expres-
sed in neuroblastoma, melanoma, and several
carcinomas [Gabrielsen et al., 1988; Linnemann
et al., 1989; Reid and Hemperly, 1992; Pancook
et al., 1997]. L1 was originally identified as a
neural cell adhesion molecule involved in axon
guidance and neuronal migration [Fransen
et al., 1997, 1998; Kadmon and Altevogt, 1997;
Hoffman, 1998; Bliss et al., 2000; Thelen et al.,
2002]. L1 protein interacts directly with both
avb3 integrin and the fibronectin receptor,
integrin a5b1, as well as the cytoskeletal linker
protein ankyrin [Bennett and Chen, 2001].
When expressed in the seminal vesicles and
prostate of the urogenital tract [Kujat et al.,
1995], L1 is normally restricted to non-prolifer-
ating epithelial cells. However, gene expression
profiling in transgenic mouse models impli-
cates L1 in both prostate and breast cancer cell
progression to metastasis [Gutwein et al., 2000;
Calvo et al., 2002]. Similarly, the L1 expression
profiles of commonly used prostate cancer cell
lines also correlate with high metastatic po-
tential (Dr. Chia-Ling Hsieh, personal com-
munication). Although normal prostatic tissue
does not detectably express L1, the protein is
readily found by immuno-staining in the stro-
mal matrices adjacent to prostate tumors. L1’s
functions are still unknown, but interestingly,
ARCaP cell expression and shedding of L1 cor-
relates with the cell line’s ability to penetrate
endothelial monolayers [Zhau et al., 1996]. L1
likely influences epithelial–endothelial inter-
actions and/or decreases vessel wall rigidity.

Altered Extracellular Matrix

Once in new environments, cancer cells
not only bind extra-cellular matrix diffe-
rently, but are known to alter the extracellu-
lar matrix adjacent to prostate, breast, and
colon carcinomas, a key behavior in cancer
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progression [Redler and Lustig, 1968, 1970].
Distal and proximal stromal fibroblasts differ
from one another in adhesion, migration, and
growth factor receptor expression. Likewise,
production of woven bone (with random, loosely
packed collagen strands) increases in prostate
cancer patients relative to that of lammelar
bone [Boyce et al., 1999]. These changes are
regulated by secretion of osteoblastic factors by
the prostate cells, regulating the core binding
factor-1 (Cbfa1), a transcription factor known to
control expression of osteocalcin, bone sialopro-
tein (BSP), osteopotin, and type I collagen
in vivo [Ducy, 2000; Karsenty, 2000; Lin et al.,
2001; Yang et al., 2001]. In vitro expression of
antisense oligo-nucleotides for Cbfa1 decreases
expression of these same osteoblastic genes
[Banerjee et al., 1997; Ducy et al., 1997]. A
similar transcription factor interruption strat-
egy may be applicable against prostate cancer
because of the cells’ osteomimicry [Koeneman
et al., 2000].
Cbfa1 affects Map Kinase (MAPK) and cyclic

AMP (cAMP) signaling pathways,which in turn
feedback on Cbfa1 protein levels. MAPK
appears to activate Cbfa1, while cAMP reduces
Cbfa1 protein levels [Xiao et al., 1998; Tintut
et al., 1999; Xiao et al., 2000]. Cbfa1’s actions on
the MAPK pathway may involve other known
MAPK stimulatory factors, including epider-
mal growth factor (EGF), fibroblast growth
factor (FGF), and integrin adhesion molecules.
In vitro, Collagen I has been found to regulate
Cbfa1 [Xiao et al., 1998]. Not only does long-
term cell culture on collagen I substrata induce
osteoblastic differentiation of bone marrow
cells, but this induction is abolished by addition
of integrin function-blocking, collagen-specific
peptides. Regulation of integrin–collagen inter-
actions may be quite complex, with cryptic sites
in the collagen molecules becoming exposed
during matrix remodeling [Petitclerc et al.,
2000; Xu et al., 2001], together with altered
secretion levels of collagens I and III [Klein,
1995; Billiard et al., 2003].
Once cancer cells enter the bone microenvir-

onment, one of the mechanisms used by cancer
cells to modify their surroundings and regulate
their own phenotype may be the shedding of
membrane vesicles. Shed membrane vesicles
are implicated in cancer cell escape from im-
mune responses, the induction of angiogenesis,
and the spread of metalloproteinase activity
[Wood et al., 1997; Kim et al., 2002]. Membrane

vesicles, derivedof specific regions of theplasma
membrane [van Blitterswijk et al., 1979, 1982;
Lerner et al., 1983] and enriched in tumor cell
surface antigens are shed both in vitro and
in vivo. Interestingly, vesicle quantities in pa-
tientserumappeartocorrelatewithcellinvasive-
nessandtumorload[Doloetal.,1994,1995,1998;
Ginestra et al., 1998, 1999; Dolo et al., 1999].

Chemotactic Factors

In addition to osteonectin and osteopontin
(the bonematrix protein scaffolds bound by avb3
integrins during migration; van der Flier and
Sonnenberg, 2001), chemokines are small mole-
cular weight cytokine-like peptides known to
affect cytoskeletal arrangement and induce
directional cell migration. Many chemokines
are secreted, andmore than 20 receptors identi-
fied. The 50 chemokines so far identified in
humans are all structurally related, mostly
basic, small (8–14 kDa)molecules, whose recep-
tors form a large family of seven-pass trans-
membrane, G protein-coupled molecules. These
receptors show considerable overlap in ligand
specificity, and act in a complex regulatory
network [Muller et al., 2001; Taichman et al.,
2002; Pfitzenmaier et al., 2003; Sun et al., 2003].
Chemokines were originally found to act during
the directed movement of leukocytes across the
endothelial layers of blood vessels into tissue
[Muller et al., 2001].Bothboneand lungstromal
cells secrete the chemokine CXCL12, whose
receptor CXCR4 is expressed on the cell sur-
faces of many breast tumor cells. Antibodies
against this CXCR4 receptor are able to sig-
nificantly reduce breast cell metastasis to
regional lymph nodes and lung [Muller et al.,
2001]. Expression levels of both CXCL12 (also
called chemokine stromal factor-1, SDF-1) and
its receptor were found to be elevated in loca-
lized and metastatic cancers [Sun et al., 2003],
where such chemotactic factors could play key
roles in directing cancer cell relocalization.
Further studies are needed to assess whether
levels of the same chemotactic factors that
stimulate metastasis to the bone are altered
physiologically during aging.

Gap Junctional Communications Among and
Between Epithelial and Stromal Cells

Assessments of the mechanisms of bi-direc-
tional cell–cell communication—from stromal
cell to cancer cell and cancer cell back to stromal
cell [Gleave et al., 1991; Chung, 1993, 1995;
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Sokoloff et al., 1996; Rowley, 1998; Tuxhorn
et al., 2001, 2002a; Sung and Chung, 2002],
have focused primarily on extracellular matrix
protein expression, growth factor secretion,
angiogenesis stimulation, and altered cell pro-
liferation and survival [Rowley et al., 1994;
Gregoire and Lieubeau, 1995; Martin et al.,
1996; Noel and Foidart, 1998; Rowley, 1998;
Tuxhorn et al., 2001, 2002a,b]. Gap junctions
between cells, and the restrictive, direct cyto-
plasmic transfer they allow, should not be
overlooked as uniquely powerful players in the
reciprocal cell–cell communication that accom-
panies cancer progression.

Gap junctions are formed of connexin mole-
cules linked between opposing cells. Electron
microscopy has revealed their existence inmost
tissues [Shivers and McVicar, 1995], including
human bone [Cancelas et al., 2000; Durig et al.,
2000; Tuxhorn et al., 2002a,b,c]. If cancer
treatments are most effective when aimed at
both stromal cells (soil) and cancerous prostate
epithelial cells (seeds), then gap junctions
between and among these cell compartments
deserve special attention for therapy. Indeed,
connexins have recently been found to be in-
volved in the ‘‘bystander effect’’ in gene therapy
experiments [Carystinos et al., 1999, 2001].
Gap junctional connections are not only im-
portant for normal cell growth regulation
[White et al., 1995; Nicholson and Bruzzone,
1997], but connexin expression levels nega-
tively correlate with cancer progression; that
is, down-regulation of connexin proteins ac-
companies increased metastatic potential
[Trosko and Ruch, 1998; Sulkowski et al.,
1999; Carystinos et al., 2001; Naus, 2002;
Trosko, 2003]. Levels of connexins 26, 32, and
43 are all known to decrease during cancer
progression [Grossman et al., 1994; Tsuda et al.,
1995;Gee et al., 2003], and some connexinshave
even been found to function as tumor suppres-
sor genes [Cunha et al., 2002]. Furthermore,
when certain connexins are overexpressed, a
decrease in tumorgenicity has been observed
[Hirschi et al., 1996; Mehta et al., 1999].
However, little is known about subtle cancerous
changes in connexin usage, and even less about
the direct mechanisms by which connexins
affect the development of primary tumors or
tumors at distant sites. Most metastases retain
some connexin expression, raising the possibi-
lity that these proteins are involved in inter-
cellular communication between cancer cells

and the cells in their new habitat. Heterotypic
gap junction formation is possible, both between
connexins of different isotypes and between cell
types [Bruzzone et al., 1996; Goodenough and
Paul, 2003]. Heterotypic gap junctional com-
munication does occur in both the bone marrow
and hematopoetic tissues, andmultiple connex-
ins are known to be involved both during bone
development and tissue homeostasis, in partic-
ular connexin 43 [Steinberg et al., 1994;
Lecanda et al., 1998, Lecanda et al., 2000a,b].
In prostate cancer, several connexins have been
analyzed, althoughwithmixed results, as only a
portion of the cells express connexins. Some
researchers have detected connexins 32 and 40
in normal prostate, but not connexin 43 [Mehta
et al., 1996; Kucuk et al., 2001]. Others have
found decreased expression of connexins 32 and
43 in prostatic carcinoma [Tsai et al., 1996;
Hossain et al., 1999a,b,c; Habermann et al.,
2001], suggesting that they are still present in
the metastatic tumors.

We are not aware of any studies correlating
androgen levels, connexin expression, and
tumor invasion and metastasis. Evidence that
androgens regulate the expression of the con-
nexin 43 gene in prostate tissue comes from
studies in normal and castrated rats, where
castration is associated with a dramatic and
specific increase in connexin 43 mRNA and
protein expression, and is correlated with
increased apoptosis [Huynh et al., 2001]. Sup-
plementing castratedanimalswith testosterone
orDHTreverses this process. Thus, in castrated
hosts, it is conceivable that connexins may
actually play a role in increasing the ability of
tumor cells to invade bone tissues, particularly
through elevations of connexin 43 in men treat-
ed with androgen deprivation therapy.

CONCLUDING REMARKS

Recently, across cancer research fields, the
interplay between cancer cells and their micro-
environments has enjoyed increased attention,
as reflected in the topic’s designated status as
an ‘‘extraordinary opportunity’’ by America’s
National Cancer Institute. Evidence is accumu-
lating that prostate cancer depends especially
strongly upon shifts in cell environment, or
that acquired, rather than inherited, genetic
alterations are key to its development and pro-
gression. At the time of disease diagnosis, pro-
state cancer is multifocal and heterogeneous,
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with an average of five apparently independent
cancer lesions and numerous other high-grade
PIN lesions [Bastacky et al., 1995], and with
each focus and lesion presenting separate
genetic constitutions. Furthermore, the asso-
ciations between prostate cancer development
and diet, lifestyle, and/or levels of sex steroid
are, in fact, stronger than those for sporadic and
even familial forms of prostate cancer [Haenszel
and Kurihara, 1968; Shimizu et al., 1991],
although certain inherited genetic loci have
been shown to contribute to familial prostate
cancer [Ahlbom et al., 1997; Page et al., 1997;
Lichtenstein et al., 2000].
Three future developments, having to do

with tumor–microenvironment interactions,
are particularly needed. First, improved meth-
odologies for cell culture and in vivo molecular
imaging will allow better recapitulation of
normal development and cancer-stroma inter-
play, as well as imaging of proteins during
cancer cell growth and locomotion. Second, the
development of additional relevant cancer cell
lines (including luminal and basal epithelial
cell lines, as well as fibroblast, smooth muscle,
myofibroblast, endothelial, and inflammatory
cell lines), each representing different stages of
prostate cancer development and progression,
would provide invaluable tools for dissecting
the features and requirements of invasive
prostate cancer, and for differentiating between
prostate cancers based on their degree of virul-
ence. Third, molecular profiling of the signaling
networks associated with soluble growth fac-
tors, insoluble extracellular matrices, and sex
steroid hormones will aid in the identification,
testing, and validation of selective anti-neoplas-
tic agents.
Given the power of the microenvironment

to direct prostate cancer progression, and the
knownpreference of prostate cancer cells for the
bone, we have reviewed here recent studies that
address shifting prostate and bone stromal
cell–cell and cell–matrix interactions during
cancer progression. Increasedknowledge of nor-
mal and aging bone stroma, reactive bone
stroma, and the prostate cancer cell response
to bone stroma, will ultimately reveal opportu-
nities for improved therapy in the prevention
and treatment of prostate cancer metastasis.
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